兰大首页 日常安排 English

司明苏

【来源:物理学院 | 发布日期:2015-05-20 | 作者:sims 】     【选择字号:

司明苏 低维材料与微观磁性研究所 副教授

地址:兰州市天水南路222号,兰州大学物理科学与技术学院

电话:0931-8914160 传真:0931-8914160

电子邮件:sims@lzu.edu.cn 个人主页:http://mingsu.lzu.edu.cn

经历及简介

Postdoc. in Physics, Indiana State University, 2009-2010.

Ph.D. in Condensed Matter Physics, Lanzhou University, 2007.

B.S. in Magnetism, Lanzhou University, 2003.

Qiushi Scholarship for Graduates by Hong Kong Qiu Shi Sci. & Tech. Foundation, 2008.

研究方向:Dr. Si's research interests include first-principles electronic structure calculations, spin dynamics in femtosecond ferromagnetism, electron and spin transport in molecular wire junctions, strongly correlated electrons systems, and high harmonic generation.

代表性论文:

47. Temperature-dependent asymmetry of anisotropic magnetoresistance in silicon p-n junctions, D. Z. Yang, T. Wang, W. B. Sui, M. S. Si, D. W. Guo, Z. Shi, F. C. Wang, and D. S. Xue, to be published in Sci. Rep.

46. Spin caloritronics of blue phosphorene nanoribbons, Y. S. Liu, X. Zhang, X. F. Yang, X. K. Hong, J. F. Feng, M. S. Si, and X. F. Wang, Phys. Chem. Chem. Phys. 17, 10462 (2015).

45. Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: beyond the rigid band approximation, G. P. Zhang, M. S. Si, Y. H. Bai, Thomas F. George, J. Phys.: Condens. Matter 27, 206003 (2015).

44. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene, Zhiya Zhang, Jiafeng Xie, Dezheng Yang, Yuhua Wang, Mingsu Si, and Desheng Xue, Appl. Phys. Express 8, 055201 (2015).

43. Negative Poisson’s ratios in few-layer orthorhombic arsenic: First-principles calculations, Jianwei Han, Jiafeng Xie, Zhiya Zhang, Dezheng Yang, Mingsu Si, and Desheng Xue, Appl. Phys. Express 8, 041801 (2015).

42. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation, G. P. Zhang, M. S. Si, and Thomas F. George, J. Appl. Phys. 117, 17D706 (2015).

41. ZnFe2O4 nanotubes: Microstructure and magnetic properties, Xuan Guo, Haojun Zhu, Mingsu Si, Changjun Jiang, Desheng Xue, Zhihua Zhang, and Quan Li, J. Phys. Chem. C 118, 30145 (2014).

40. Theoretical prediction of carrier mobility in few-layer BC2N, Jiafeng Xie, Z. Y. Zhang, D. Z. Yang, D. S. Xue, and M. S. Si, J. Phys. Chem. Lett. 5, 4073 (2014).

39. Decoding the mechanism of the mechanical transfer of a GaN-based heterostructure via an h-BN release layer in a device configuration, Gaoxue Wang, D. Z. Yang, Z. Y. Zhang, M. S. Si, Desheng Xue, Haiying He, and Ravindra Pandey, Appl. Phys. Lett. 105, 121605 (2014).

38. Probing ultrafast spin moment change of bcc iron in crystal-momentum space: A proposal, M. S. Si, J. Y. Li, D. S. Xue, G. P. Zhang, Ultrafast magnetism I (Springer proceedings in Physics) Volume 159, p47-49 (2015).

37. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations, Jiafeng Xie, M. S. Si, D. Z. Yang, Z. Y. Zhang, and D. S. Xue, J. Appl. Phys. 116, 073704 (2014).

36. Crystal momentum-dependent anisotropy of the Dirac cone in the rectangular carbon allotropes, D. Z. Yang, M. S. Si, G. P. Zhang, and D. S. Xue, Europhys. Lett. 107, 20003 (2014).

35. Strain Engineering of Dirac cones in Graphyne, Gaoxue Wang, M. S. Si, A. Kumar and R. Pandey, Appl. Phys. Lett. 104, 213107 (2014).

34. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets, M. S. Si, Daqiang Gao, Dezheng Yang, Yong Peng, Z. Y. Zhang, Desheng Xue, Yushen Liu, Xiaohui Deng, and G. P. Zhang, J. Chem. Phys. 140, 204701 (2014).

33. Crystal-momentum dispersion of ultrafast spin change in fcc Co, M. S. Si, J. Y. Li, D. Z. Yang, D. S. Xue, and G. P. Zhang, Sci. Rep. 4, 5010 (2014).

32. Indirect-direct band gap transition through electric tuning in bilayer MoS2, Z. Y. Zhang, M. S. Si, Y. H. Wang, X. P. Gao, Dongchul Sung, Suklyun Hong, Junjie He, J. Chem. Phys. 140, 174707 (2014).

31. Energy gaps in α-graphdiyne nanoribbons, X. N. Niu, D. Z. Yang, M. S. Si, and D. S. Xue, J. Appl. Phys. 115, 143706 (2014).

30. Effect of Si doping on the electronic properties of BN monolayer, S. K. Gupta, H. He, D. Banyai, Mingsu Si, R. Pandey, and S. P. Karna, Nanoscale 6, 5526 (2014).

29. Defect-related ferromagnetism in ultrathin metalfree g-C3N4 nanosheets, D. Gao, Q. Xu, J. Zhang, Z. Yang, Mingsu Si, Z. Yan, and D. Xue, Nanoscale 6, 2577 (2014).

28. Angular dependence of the magnetoresistance effect in silicon based p-n junction device, T. Wang, Mingsu Si, D. Yang, Z. Shi, F. Wang, Z. Yang, S. Zhou, and D. Xue, Nanoscale 6, 3978 (2014).

27. Dirac cone in α-graphdiyne: a first-principles study, Xiaoning Niu, Xingze Mao, Dezheng Yang, Zhiya Zhang, Mingsu Si, and Desheng Xue, Nanoscale Res. Lett. 8, 469 (2013).

26. Manipulating femtosecond magnetism through pressure: First-principles calculations, M. S. Si, J. Y. Li, D. S. Xue, and G. P. Zhang, Phys. Rev. B 88, 144425 (2013).

25. Tuning the composition of Zn-Fe-O nanotube arrays: from zinc ferrite ZnFe2O4 to hematite α-Fe2O3, X. Guo, H. Zhu, M. S. Si, C. Jiang, D. Xue, and Q. Li, CrystEngComm 15, 8306 (2013).

24. Origin of the unexpected room temperature ferromagnetism: formation of artificial defects on the surface in NaCl particles, Jing Zhang, Daqiang Gao, M. S. Si, Zhonghua Zhu, Guijin Yang, Zhenhua Shi, and Desheng Xue, J. Mater. Chem. C 1, 6216 (2013).

23. A high-efficiency double quantum dot heat engine, Y. S. Liu, X. F. Yang, X. K. Hong, M. S. Si, F. Chi, and Y. Guo, Appl. Phys. Lett. 103, 093901 (2013).

22. Adjustable microwave permeability of nanorings: A micromagnetic investigation, Guozhi Chai, Xinhua Wang, M. S. Si, and Desheng Xue, Phys. Lett. A 377, 1491-1494 (2013).

21. Correlation between ultrafast demagnetization process and Gilbert damping in amorphous TbFeCo films, Y. Ren, Y. L. Zhou, M. S. Si, Z. Z. Zhang, Q.Y. Jin, and S. M. Zhou, IEEE TRANS. MAGN. 49, 3159-3162 (2013).

20. Ferromagnetism in freestanding MoS2 nanosheets, Daqiang Gao, M. S. Si, J. Y. Li, J. Zhang, Z. P. Zhang, Z. L. Yang and D. S. Xue, Nanoscale Res. Lett. 8, 129 (2013).

19. Hot spin spots in the Laser-induced demagnetization, M. S. Si and G. P. Zhang, AIP Advances 2, 012158 (2012).

18. Communication: Oscillated band gaps of B/N-codoped α-graphyne, Xiaohui Deng, M. S. Si, and J. Y. Dai, J. Chem. Phys. 137, 201101 (2012).

17. A proposal for time-dependent pure-spin-current generators, Y. S. Liu, X. F. Yang, F. Chi, M. S. Si, Y. Guo, Appl. Phys. Lett. 101, 213109 (2012).

16. g-B3N3C: a novel two-dimensional graphite-like material, J. Y. Li, D. Q. Gao, X. N. Niu, M. S. Si, and D. S. Xue, Nanoscale Res. Lett. 7, 624 (2012).

15. Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation, G. P. Zhang, M. S. Si, and T. F. George, Europhys. Lett. 94, 17005 (2011).

14. d0 ferromagnetism in undoped sphalerite ZnS nanoparticles, D. Gao, G. Yang, J. Zhang, Z. Zhu, M. S. Si, and D. Xue, Appl. Phys. Lett. 99, 052502 (2011).

13. The improvement of the adsorption abilities of some gas molecules on g-BN sheet by carbon doping, X. Deng, D. Zhang, M. S. Si, and M. Deng, Physica E: Low-dimensional systems and nanostructres 44, 495 (2011).

12. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling, D. Gao, Z. Yang, J. Zhang, G. Yang, Z. Zhu, J. Qi, M. S. Si, and D. Xue, AIP Advances 1, 042168 (2011).

11. Ferromagnetism induced by oxygen vacancies in Zinc peroxide nanoparticles, D. Gao, J. Zhang, G. Yang, J. Qi, M. S. Si, and D. Xue, J. Phys. Chem. C 115, 16405 (2011).

10. Resolving photon-shortage mystery in femtosecond magnetism, M. S. Si and G. P. Zhang, J. Phys.: Condens. Matter 22, 076005 (2010).

9. Oxidation fracturing of the graphitic BN sheet, M. S. Si and D. S. Xue, J. Phys. Chem. Solid 71, 1221 (2010).

8. Divacancies in graphitic boron nitride sheets, M. S. Si, J. Y. Li, H. G. Shi, X. N. Niu, and D. S. Xue, Europhys. Lett. 86, 46002 (2009).

7. Magnetic properties of carbon nanotube terminally connecting metal molecular complexes, M. S. Si and D. S. Xue, Appl. Phys.Lett. 92, 081907 (2008).

6. Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations, M. S. Si and D. S. Xue, Phys. Rev. B 75, 193409 (2007).

5. Photoluminescence property of Co3O4 nanowires, D. Xue, Y. Gong, W. Liu, M. S. Si, and Z. Liu, Chinese Phys. Lett. 24, 1756 (2007).

4. First-principles study of silicon-doped (5,5) BN nanotubes, M. S. Si and D. S. Xue, Europhys. Lett. 76, 664 (2006).

3. Bayesian interence approach to particle size distribution estimation in ferrofluids,D. S. Xue and M. S. Si, IEEE TRANS. MAGN. 42, 3657 (2006).

2. Hydrodynamic properties of Fe3O4 kerosene-based ferrofluids with narrow particle size distribution, J. Zhang, X. Xu, M. S. Si, Y. Zhou, and D. Xue, Chinese Phys. Lett. 22, 2944 (2005).

1. The fabrication and the coercivity mechanism of segmented (Ni/Fe)m composite nanowire arrays, D. S. Xue, H. G. Shi, and M. S. Si, J. Phys.: Condens. Matter 16, 8775 (2004).

研究组成员:韩建卫 谢家峰