兰大首页 日常安排 English

贺德衍

【来源:物理学院 | 发布日期:2013-04-27 | 作者:null 】     【选择字号:

贺德衍 教授 性别:男
凝聚态物理、材料物理与化学、微电子与固体电子学专业博士生导师   
电子材料研究所 
地址:兰州市天水南路222号, 兰州大学物理科学与技术学院
电话:0931-8912546 传真:0931-8913554  
电子邮件:hedy@lzu.edu.cn  
个人简介:
    贺德衍,男,1962年12月生,兰州大学物理科学与技术学院教授,博士生导师。1982年7月兰州大学物理系半导体物理专业毕业,获理学学士学位;1985年7月获兰州大学物理系固体物理专业非晶态半导体研究方向理学硕士学位;1995年3月毕业于日本东京工业大学大学院综合理工学研究科电子化学专业,获工学博士学位。1995年4月至1996年3月在日本东京工业大学大学院从事博士后研究工作。1997年9月至1998年7月在加拿大Manitoba大学物理系做高级访问学者。1996年5月晋升为教授,1998年11月被遴选为博士生指导教师。长期从事电子薄膜材料、能源材料及其器件的研究与开发,主持完成了国家自然科学基金青年项目、国家自然科学基金面上项目(5项)、教育部博士点基金项目(完成1项博导类课题, 1项优先发展领域类课题)、教育部“高校青年教师奖”项目,教育部“优秀青年教师资助计划”项目、教育部“高等学校骨干教师资助计划”项目以及甘肃省自然科学基金项目等。获甘肃省科技进步一等奖一次,二等奖两次,三等奖两次,获国家教委科技进步三等奖一次,获甘肃省教学成果一等奖两次、二等奖一次。截至目前,共发表SCI论文200余篇,被SCI论文引用2180余次(根据ISI Web of Knowledge数据库)。出版译著一部。
    享受政府特殊津贴。入选甘肃省高校跨世纪学科带头人、甘肃省优秀青年、教育部跨世纪优秀人才培养计划。获教育部高校青年教师奖、教育部全国高等学校优秀骨干教师奖、宝钢优秀教师奖。获甘肃省优秀专家称号。
研究方向: 电子薄膜材料、能源材料及其器件的研究
发表论文:
近五年在学术杂志、期刊上发表的论文
[1]   Y. Zheng, L. Qiao, J. Tang, Z. Yang, H. Yue and D. He*, Electrochemically deposited interconnected porous Co3O4 nanoflakes as anodes with excellent rate capability for lithium ion batteries, RSC Adv. 5 (2015) 36117–36121.
[2]   X. Li, Z. Yang, Y. Fu, L. Qiao, D. Li, H. Yue, and D. He*, Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery, ACS Nano 9 (2015)1858-1867.
[3]   Y. Qin, F. Li, X. Bai, X. Sun, D. Liu, and D. He*, A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries, Mater. Lett. 138 (2015) 104-106.
[4]   W. Xie, S. Li, S. Wang, S. Xue, Z. Liu, X. Jiang, and D. He*, N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries, ACS Appl. Mater. Interfaces 6(2014) 20334-20339.
[5]   H. Yue, F. Li, Z. Yang, X. Li, S. Lin, and D. He*, Facile preparation of Mn3O4 coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries, J. Mater. Chem. A. 2 (2014) 17352-17358.
[6]   S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, and D. He*, Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries, J. Mater. Chem. A. 2 (2014) 17139-17145.
[7]   X. Li, X. Shang, D. Li, H. Yue, S. Wang, L. Qiao, and D. He*, Facile synthesis of porous MnO microspheres for high-performance lithium ion batteries, Part. Part. Syst. Charact. 31 (2014) 1001-1007.
[8]   Z. Yang, S. Bai, H. Yue, X. Li, D. Liu, S. Lin, F. Li, and D. He*, Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries, Mater. Lett. 136 (2014) 107-110.
[9]   X. Li, Z. Yang, S. Lin, D. Li, H. Yue, X. Shang, Y. Fu, and D. He*, A facile and inexpensive approach to improve the performance of silicon film as an anode for lithium-ion batterie, J. Mater. Chem. A. 2 (2014) 14817-14821.
[10] D. Li, X. Li, X. Hou, X. Sun, B. Liu, and D. He*, Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries, Chem. Commun. 50 (2014) 9361-9364.
[11] D. Liu, X. Wang, D. He, T. D. Dao, T. Nagao, Q. Weng, D. Tang, X. Wang, W. Tian, D. Golberg, and Y. Bando, Magnetically assembled Ni@Ag urchin-like ensembles with ultra-sharp tips and numerous gaps for SERS applications, Small 10 (2014) 2564-2569.
[12] Y. Liu, X. Li, Z. Wei, L. Zhang, X. Wei, and D. He*, Preparation and electrochemical performance of MWCNTs@MnO2 nanocomposite for lithium ion batteries, Sci. China Tech. Sci. 57 (2014) 1077-1080.
[13] F. Li, Y. Qin, H. Yue, Z. Yang, X. Li, and D. He*, In situ coating of NiO on Ni-silicide nanowires with roughened surfaces for improved electrochemical energy storage, J. Mater. Chem. A. 2 (2014) 9156–9163.
[14] Y. Li, Q. Chen, D. He, and J. Li, Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization, Nano Energy 7 (2014) 10-24.
[15] D. Wang, Z. Yang, and D. He, Electrochemical performances of nanorod structured Si1-xGex anodes, Mater. Lett. 128 (2014) 163-166.
[16] F. Li, H. Yue, Z. Yang, X. Li, Y. Qin, and D. He*, Flexible free-standing graphene foam supported silicon films as high capacity anodes for lithium ion batteries, Mater. Lett. 128 (2014) 132-135.
[17] X. Wang, Y. Fan, R. A. Susantyoko, Q. Xiao, L. Sun, D. He, and Q. Zhang, High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks, Nano Energy 5 (2014) 91–96.
[18] J. Tang, D. Liu, Y. Zheng, X. Li, X. Wang, and D. He*, Effect of Zn-substitution on cycling performance of α-Co(OH)2 nanosheet electrode for supercapacitors, J. Mater. Chem. A. 2 (2014) 2585-2591.
[19] H. Yue, F. Li, Z. Yang, J. Tang, X. Li, and D. He*, Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery, Mater. Lett. 120 (2014) 39-42.
[20] X. Li, D. Li, Z. Wei, X. Shang, and D. He*, Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes, Electrochimica Acta 121 (2014) 415-420.
[21] D. Li, X. Li, S. Wang, Y. Zheng, L. Qiao, and D. He*, Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage, ACS Appl. Mater. Interfaces 6 (2014) 648-654.
[22] Z. Wei, X. Wei, S. Wang, and D. He*, Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst, Mater. Lett., 118 (2014) 107-110.
[23] Z. Yang, D. Wang, F. Li, H. Yue, D. Liu, X. Li, L. Qiao, and D. He*, Copper nanorods supported phosphorus-doped silicon for lithium storage application, Mater. Lett. 117 (2014) 58-61.
[24] S. Li, H. Yue, Q. Wang, S. Wang, W. Xie, and D. He*, Facile synthesis of 3D networks of C/SnOx/C hybrid nanofibers with enhanced lithium storage, Mater. Lett. 116 (2014) 271-274.
[25] Z. Wei, X. Wei, Y. Zheng, and D. He*, Self-combustion fabrication of anatase/rutile titanium oxides encapsulated in thin carbon shells and their photocatalytic performance, Mater. Lett. 113 (2013) 163-166.
[26] F. Li, H. Yue, P. Wang, Z. Yang, D. Wang, D. Liu, Li Qiao, and D. He*, Synthesis of core-shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application, CrystEngComm 15 (2013) 7298-7306.
[27] Y. Fu, Z. Yang, X. Li, X. Wang, D. Liu, D. Hu, L. Qiao, and D. He*, Template-free synthesized Ni nanofoams as nanostructured current collectors for high-performance electrodes in lithium ion batteries, J. Mater. Chem. A 1 (2013) 10002-10007.
[28] N. Feng, D. Hu, P. Wang, X. Sun, X. Li, and D. He*, Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries, Phys. Chem. Chem. Phys. 15 (2013) 9924-9930.
[29] X. Li, L. Qiao, D. Li, X. Wang, W. Xie, and D. He*, Three-dimensional network structured α-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries, J. Mater. Chem. A 1 (2013) 6400-6406.
[30] N. Feng, L. Qiao, D. Hu, X. Sun, P. Wang, and D. He*, Synthesis, characterization, and lithium-storage of ZnO/SnO2 hierarchical architectures, RSC Adv. 3 (2013) 7758-7764.
[31] J. Li, Y. Li, D. He, H. Yu, and X. Yan, Design and mechanism of cost-effective and highly efficient ultrathin (< 0.5 ?m) GaAs solar cells employing nano/micro-hemisphere surface texturing, AIP Adv. 3 (2013) 032145 (7pp).
[32] L. Qiao, X. Wang, L. Qiao, X. Sun, X. Li, Y. Zheng, and D. He*, Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries, Nanoscale 5 (2013) 3037-3042.
[33] X. Wang, L. Qiao, X. Sun, X. Li, D. Hu, Q. Zhang, and D. He*, Mesoporous NiO nanosheet networks as high performance anode for Li ion batteries, J. Mater. Chem. A 1 (2013) 4173-4176.
[34] Q. Wang, X. Sun, D. He*, and J. Zhang, Preparation and study of carbon nano-onion for lithium storage, Mater. Chem. Phys. 139 (2013) 333-337.
[35] Y. Song, C. Zhang, Y. Yang, J. Gou, L. Zhang, and D. He, Color center creation in SiO2 under irradiation with swift heavy ions: Dependence on energy loss and fluence, Optical Materials 35 (2013) 1057-1061.
[36] X. Sun, X. Wang, N. Feng, L. Qiao, X. Li, and D. He*, A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries, J. Anal. Appl. Pyrol. 100 (2013) 181-185.
[37] D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, and D. Golberg, Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance, J. Mater. Chem. A 1 (2013) 1952-1955.
[38] L. Qiao, X. Sun, Z. Yang, X. Wang, Q. Wang, and D. He*, Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries, Carbon 54 (2013) 29-35.
[39] D. Liu, Z. Yang, P. Wang, F. Li, D. Wang, and D. He*, Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anode, Nanoscale 5 (2013) 1917-1921.
[40] Z. Yang, D. Wang, F. Li, D. Liu, P. Wang, X. Li, H. Yue, S. Peng, and D. He*, Facile synthesis of CuO nanorod for lithium storage application, Mater. Lett. 90 (2013) 4-7.
[41] Y. Song, C. Zhang, D. He, L. Zhang, J. Gou, Y, Yang, and J, Li, Annealing effects on the photoluminescence of Pb-ion irradiated He-doped sapphire, Sci. China-Phys. Mech. Astron. 55 (2012) 1803-1807.
[42] Y. Fu, X. Li, X. Sun, X. Wang, D. Liu, and D. He*, Self-supporting Co3O4 with lemongrass-like morphology as a high-performance anode material for lithium ion batteries, J. Mater. Chem. 22 (2012) 17429-17431.
[43] S. Peng, N. Feng, D. Hu, D. He, C.-W. Byun, Y. W. Lee, and S.-K. Joo, Polycrystalline silicon thin films prepared by Ni silicide induced crystallization and the dopant effects on the crystallization, Curr. Appl. Phys. 12 (2012) 1470-1475.
[44] X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang, and D. He*, Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes, J. Mater. Chem. 22 (2012) 9189-9194.
[45] S. Peng, D. Hu, and D. He, Low-temperature preparation of polycrystalline germanium thin films by Al-induced crystallization, Appl. Surf. Sci. 258 (2012) 6003-6006.
[46] N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu, and D. He*, Synthesis of monodisperse single crystal Zn2SnO4 cubes with high lithium storage capacity, Mater. Lett. 76 (2012) 66-68.
[47] X. Sun, X. Wang, L. Qiao, D. Hu, N. Feng, X. Li, Y. Liu, and D. He*, Electrochemical behaviors of porous SnO2-Sn/C composites derived from pyrolysis of SnO2/poly(vinylidene fluoride), Electrochimica Acta 66 (2012) 204-209.
[48] D. Liu, Q. Wang, L. Qiao, F. Li, D. Wang, Z. Yang, and D. He*, Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes, J. Mater. Chem. 22 (2012) 483-487.
[49] X. Sun, X. Wang, Y. Qin, X. Li, L. Qiao, N. Feng, D. Hu, and D. He*, Synthesis of novel pompon-like porous SnO2 and its application in lithium-ion battery, Mater. Lett. 66 (2012) 193-195.
[50] D. Wang, Z. Yang, F. Li, D. Liu, P. Wang, and D. He*, Broadband antireflection of silicon nanorod arrays prepared by plasma enhanced chemical vapor deposition, Appl. Surf. Sci. 258 (2011) 1058-1061.
[51] S. Ni, D. He, X. Yang, and T. Li, Low temperature synthesis of Fe3O4 nanoparticles and its application in lithium ion batteries, Mater. Chem. Phys. 130 (2011) 1260-1264.
[52] D. Wang, Z. Yang, F. Li, X. Wang, D. Liu, P. Wang, and D. He*, Performance of Si-Ni nanorod as anode for Li-ion batteries, Mater. Lett. 65 (2011) 3227-3229.
[53] S. Ni, D. He, X. Yang, and T. Li, Low temperature synthesis of Fe3O4 micro-spheres and its application in lithium ion battery, J. Alloys Compd. 509 (2011) L305-L307.
[54] X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang, and D. He*, NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries, J. Mater. Chem. 21 (2011) 9988-9990.
[55] D. Wang, Z. Yang, F. Li, and D. He*, The microstructure and optical properties of crystallized hydrogenated silicon films prepared by very high frequency glow discharge, Appl. Surf. Sci. 257 (2011) 8350-8354.
[56] D. Wang, Z. Yang, F. Li, D. Liu, X. Wang, H. Yan, and D. He*, Improved performance for lithium-ion batteries with nickel nanocone-arrays supported germanium anode, Mater. Lett. 65 (2011) 1542-1544.
[57] X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He*, Nanostructured NiO electrode for high rate Li-ion batteries, J. Mater. Chem. 21 (2011) 3571-3573.
[58] Y. Qin, F. Li, D. Liu, H. Yan, J. Wang, and D. He*, The structure and optical properties of silicon nanowires prepared by inductively coupled plasma chemical vapor deposition, Mater. Lett. 65 (2011) 1117-1119.
[59] Y. Ding, H. Shirai, and D. He, White light emission and electrical properties of silicon oxycarbide-based metal-oxide-semiconductor diode, Thin Solid Films 519 (2011) 2513-2515.
[60] S. Ni, D. He, X. Yang, and T. Li, Hydrothermal synthesis of Cu3(OH)2V2O7?nH2O nanoparticles and its application in lithium ion battery, J. Alloys Compd. 509 (2011) L142-L144.
[61] G. Zhou, S. Ni, X. Sun, X. Wang, Q. Wang, and D. He*, Visible photoluminescence of hydrothermal synthesized Sn1-xNixO2 nanostructures, J Mater Sci: Mater Electron 22 (2011) 174-178.
[62] X. Wei, Z. Wei, L. Zhang, Y. Liu, and D. He*, Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination, J. Colloid Interface Sci. 354 (2011) 76-81.
[63] J. Wang, Y. Qin, H. Yan, P. Gao, J. Li, M. Yin, and D. He*, Effects of the distance between the inductance coil and substrates on the microstructure and optical properties of silicon films deposited by ICP-CVD, Physics Procedia 18 (2011) 128-135.
[64] 贺德衍,刘德全,王琦,杨丰,乔丽,秦艳丽,一种纳米间距平面电极的制备方法,专利号:ZL 2010 1 0172785.2;专利申请日:2010年05月14日;授权公告日:2011年9月28日
研究组成员: