兰大首页 日常安排 English

栗军帅

【来源:物理学院 | 发布日期:2015-04-24 | 作者:null 】     【选择字号:

栗军帅 教授    博导 性别:男

博士生导师:微电子学与固体电子学,凝聚态物理

工程硕士生导师:材料工程

地址:兰州市天水南路222号, 兰州大学物理科学与技术学院
电话: 传真:0931-8913554  
电子邮件:jshli@lzu.edu.cn  
个人简介:

栗军帅男,教授/博导。入现职前分别在日本埼玉大学(2006.10-2008.09)、新加坡南洋理工大学(2008.09-2012.03)及新加坡科技发展局微电子研究所(2008.12-2009.12)从事与半导体纳米/亚微米结构的光电学行为及其在新型光电器件中的应用等相关研究工作。目前的主要研究方向为清洁电能的产生和储存器件,新型半导体材料的开发和应用。迄今,在包括有国际电子器件奥林匹克之称的IEEE International Electron Devices MeetingIEDM,国际重要学术期刊Applied Physics LettersSmallNanoscaleNanotechnologyNano EnergyIEEE Electron Device Letters等公开发表科技论文50余篇;应邀撰写书目章节2章、综述论文1篇。其中,部分研究工作得到了学界的认可,取得了较高的引用(如Applied Physics Letters 95, 0331022009):181次(ESI高被引用论文);Applied Physics Letters 95, 2431132009):114次。参考 Web of Science 2017.04。主持与新能源器件研究相关的国家自然科学基金项目2项、教育部科技项目1项。

研究方向:

1.清洁电能的产生和储存器件

    2新型半导体材料的开发和应用
发表论文:
1.Nanostructural optimization of silicon/PEDOT:PSS solar cells for performance improvement, Journal of Physics D-Applied Physics 50,175105 (2017).
2.Enhancing open-circuit voltage of solution-processed Cu2ZnSn(S,Se)4 solar cells with Ag substitution, IEEE JOURNAL OF PHOTOVOLTAICS, (Accepted 2017).
3.Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture, Nano-Micro Letters 9, 38 (2017).
4.Remarkable room-temperature magnetoresistance in silicon strip devices, PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS 11, UNSP 1600253 (2017).
5.Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture, Journal of Physics D-Applied Physics 49,215104 (2016). (Selected as “Highlights in 2016”)
6.Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties, Journal of Physics D-Applied Physics 49, 385301 (2016).
7.High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method, IEEE JOURNAL OF PHOTOVOLTAICS 6, 888 (2016).
8.Direct synthesis of hydrogen peroxide from plasma-water interactions, Scientific Reports 6, 38454 (2016).
9.Plasma electrochemical synthesis of cuprous oxide nanoparticles and their visible-light photocatalytic effect, ELECTROCHIMICA ACTA 222, 1677 (2016).
10.Facile synthesis of cuprous oxide nanoparticles by plasma electrochemistry, Journal of Physics D-Applied Physics 49, 275201 (2016).
11.A review of plasma-liquid interactions for nanomaterial synthesis, Journal of Physics D-Applied Physics 48, 424005 (2015).
12.Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization, Nano Energy 7, 10-24 (2014).
13.Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications, Applied Physics Letters 103, 253105 (2013).
14.Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics, Nanotechnology 23, 194010 (2012).
15.Aligned Si nanowire-based solar cells, Nanoscale 3, 4888 (2011) .
16.Novel low aspect-ratio Si nano-hemisphere array surface texturing for solar cell applications,Small 7, 3138 (2011).
17.Low aspect-ratio hemispherical nanopit array surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells, Applied Physics Letters 98, 021905 (2011).
18.Si nanocone array optimization on Si thin films for solar energy harvesting, Journal of Physics D: Applied Physics43, 255101 (2010).
19.Design guidelines of periodic Si nanowire arrays for solar cell application, Applied Physics Letters 95, 243113 (2009).
20.Si nanopillar array optimization on Si thin films for solar energy harvesting, Applied Physics Letters 95, 033102 (2009). [Also selected for publication on Virtual Journal of Nanoscale Science & Technology, August 3, 2009.]
21.Boosting Short-Circuit Current With Rationally Designed Periodic Si Nanopillar Surface Texturing for Solar Cells, IEEE Transactions on Electron Devices 58, 3224 (2011).
22.Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface, Journal of Applied Physics 109, 084306 (2011).
23.Si nanopillar array surface texture for thin film solar cell with radial p-njunction, IEEE Electron Device Letters 32, 176 (2011).
24.Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application”, Journal of Applied Physics 108, 024301 (2010).
25.Design high efficiency Si nanopillar array textured thin film solar cell, IEEE Electron Device Letters 31, 335 (2010).
26.Optical absorption enhancement in nanopore textured silicon thin film for photovoltaic application, Optics Letters 35, 40 (2010).
27.Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells, IEEE International Electron Devices Meeting 28.Enhancement of Si-based solar cell efficiency via nanostructure integration, pp. 3-55, Book Chapter 1 in the book entitled “Energy Efficiency and Renewable Energy through Nanotechnology” (Springer-Verlag, 2011), ISBN: 978-0-85729-637-5.
研究成果:   News report & Research highlights:
1. Light-harvesting boosted by 'forests' of nanostructures on thin silicon films: http://www.nano.org.uk/news/486/;
2. Solar cells: An optimal harvest: http://www.research.a-star.edu.sg/research/6132;
3. Growing ‘forests’ of nanostructures on thin silicon films boosts their light-harvesting properties: http://www.nanowerk.com/news/newsid=15579.php;
4. Physics: Data from Nanyang Technological University Advance Knowledge in Nanotechnology - Nanopits:?http://physics.verticalnews.com/articles/5173729.html.
5. Our paper titled 'Toward High Efficiency Ultrathin Si Film-based Solar Cells: Surface Texturing Via Low Aspect-ratio Si Nano-hemisphere Arrays' won the best poster award in ICMAT 2011, Singapore. Group member Dr Li Yali attended the award ceremony, and received the award from Prof Bertil Andersson, former Chemistry Chairman for Nobel Committee: https://picasaweb.google.com/108377087830412064480/ICMAT20111Jul11#5625081686550034242;
https://picasaweb.google.com/108377087830412064480/ICMAT20111Jul11#5625080438758394802;
https://picasaweb.google.com/108377087830412064480/ICMAT20111Jul11#5625081097452147490.
6. Study compares light trapping in hexagonal and square nano arrays........
Array symmetry has little impact compared with other parameters such as periodicity, nanowire diameter and length
http://nanotechweb.org/cws/article/lab/49922
http://iopscience.iop.org/0957-4484/labtalk-article/49922
    
研究组成员: