物理科学与技术学院彭尚龙教授课题组在新型太阳能电池研究方面取得进展

发布日期:2018-10-18 作者:    编辑:ceshi    来源:

传统的硅太阳能由于制备流程复杂、硬件设备投资高,使得电池成本高,限制了更大规模的应用。因此,开发新型低成本太阳能电池具有重要的实际应用价值。选用制备工艺简单的新型电荷选择性材料(PEDOT:PSS(聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸))与晶硅基片形成非掺杂的异质结太阳能电池,可以避免掺杂所需要的高温工艺,有望获得低成本高效的硅基异质结太阳能电池。

但是这类异质结电池存在PEDOT:PSS材料本身空穴迁移率低,PEDOT:PSS硅接触面性能差,以及硅/金属电极接触电阻高等问题,限制了电池转换效率的提高。针对这些问题,兰州大学物理科学与技术学院彭尚龙教授团队采用PEDOT:PSS材料改性、光吸收改善、硅纳米陷光结构的构筑、硅表面钝化和硅/金属界面接触电阻降低等策略,实现电池转换效率提升和成本降低,取得了一系列研究成果。

针对PEDOT:PSS薄膜导电性不高和载流子迁移率低等问题,通过将还原氧化石墨烯(rGO)引入到PEDOT:PSS薄膜中,实现了导电性提高和电池材料光吸收增强,并且通过电池结构的设计,最终实现了电池转换效率30%的提升,使得电池转换效率达到12%。(Xinyu Jiang, Shanglong Peng*, et al. Appl. Sur. Sci., 2017, 407, 398-404.

尽管改善PEDOT:PSS特性后电池效率有较大提升,但仍然较低,这是因为平面结构硅对光的反射很强,造成了很大一部分光的浪费,因此考虑通过构筑硅纳米陷光结构来降低光的反射,从而实现电池效率提升。采用锥状硅纳米洞结构,并通过调控其孔径和深度,实现PEDOT:PSS对硅很好地包覆和对光的充分利用。同时为了减少背电极和硅之间的载流子复合,在它们之间引入了碳酸铯(Cs2CO3)钝化层。最终实现了13.5%的电池转换效率。 (Zilei Wang, Shanglong Peng*, et al. Nano Energy, 2017, 41, 519-526.)

考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。并结合硅金字塔陷光结构,最终实现超过15%的电池转换效率。(Zilei Wang, Shanglong Peng*, et al. Nano Energy, 2018, DOI:1016/j.nanoen.2018.10.010.)

相关的研究成果为传统硅基太阳能电池降低成本提供了新的思路,为其将来大范围推广提供了可能。该工作得到国家自然科学基金(6137601161106006)和甘肃省自然科学研究基金计划项目(17JR5RA1981208RGZA200)资助。

 

新闻背景:

  《Nano Energy》期刊主题为纳米材料或纳米器件在能源相关领域中的应用,主要收录与主题相关的实验和理论研究工作。文章类型包括综述(Review)、通讯(Rapid Communication)以及能源新闻和观点(News and Views)。所发表文章研究领域涵盖各式电池、氢气制备与存储、发光二极管、高效节能光学器件、太阳能电池、纳米压电器件、自驱动纳米机器与纳米系统、超级电容器、热电材料和能源相关政策和展望。该期刊2018年影响因子高达13.21,跻身能源类期刊前列。